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Abstract 

Statistics say that bearings are this part of induction motors which is most susceptible to damage. The equipment
employed for bearing diagnostics usually makes use of vibrations as the criterion for technical condition of the 
bearings. A faulty bearing results in additional motor vibrations. They are reflected in the harmonic content of
stator currents. In certain operating conditions the current signal is the sole source of information on the state of 
the motor. The paper presents a mathematical model of the motor, allowing for rotor eccentricities. Calculated
spectra of the stator currents are presented for the cases of operation with rotor vibrations mapping with some
approximation the vibrations caused by faulty bearings. The paper presents also the  results of laboratory
simulations for a motor put into vibrations of adjustable frequency. Vibrations of the motor housing simulate the
rotor oscillations caused by a damaged bearing. The results of laboratory simulations permitted to define the 
relations linking vibrations of the air gap with the components in the stator current spectrum.   
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1. Introduction 

 
The stator current of the motor is distorted in case of appearance of certain type of failures. 

Under  spectral analysis of the motor current  one obtains a series of spectrum components 
which are connected with definite types of  damage. An analysis of the amplitudes and phase 
shifts allows to recognize the type of faults. In comparison with other known methods this one 
shows certain advantages. Typical faults detected by this method are damages to the stator 
and rotor windings as well as misalignment of a shaft. The most common cause of failures of 
squirrel-cage induction motors are, however, failure of bearings. 

Damaged elements of a bearing cause radial oscillations of the rotor. This is the source of 
disturbance in the geometry of the air gap of the machine and, in effect, of modulation of the 
current [1]. 

The authors of this paper have made an attempt to create a diagnostic system which would 
provide credible measurement results, and on their basis, reliable diagnoses.  
 
2. A Mathematical Model of the Motor 
 

In simulation tests on a mathematical model it was assumed that rotor vibrations depend on 
integral multiples of the rotor’s angle of rotation. Let us emphasize that this is only an 
approximation of actual rotor vibrations which, strictly speaking, generally are not integral 
multiples of the angle of rotation of the rotor. In the mathematical model we assume that rotor 
vibrations are perpendicular to the stator axis, i.e.,− the axes of the rotor and stator remain 
parallel to each other, also during vibrations of the rotor caused by a damaged bearing. This 



means that the rotation of the rotor will be similar to the movement of a rotor showing some 
static eccentricity, which is not constant but vary and is dependent upon the  rotor’s angular 
position. Such an approximate comprehension of a damaged bearing facilitated the adaptation 
of the model of a squirrel-cage induction machine which has been elaborated and originally 
implemented to diagnostic calculations, taking into account static and dynamic eccentricities 
as well as slotting.  

The implemented calculation model consists of a segment which automatically generated 
differential equations for linearly independent circuits of the stator and rotor. These circuits 
include parallel branches of stator phases and external meshes of the rotor squirrel-cage. The 
equation of one end ring of the squirrel-cage has been also taken into account. The equation 
of the second end ring is redundant because of the linear dependence on previous ones. The 
problem lies in the calculation of the matrices of coefficients of self- and mutual inductances: 
of  the stator, rotor and stator-rotor. In the implemented model these coefficients are 
calculated numerically for several hundred angular positions of the rotor. Each of the 
coefficients is then developed into a Fourier series. At this stage, derivatives of the 
inductances with respect to the rotation angle of the rotor are calculated. They are calculated 
from analytical formulas for the series, with coefficients determined numerically. Derivatives 
of inductances are used for calculation of the electromagnetic torque present in the 
mechanical equation [3]. 

Both the eccentricity and slotting are mapped by lengthening of main magnetic field lines. 
Thus, slotting results in a reduction of permeance under the slot openings of the stator and 
rotor. These local reductions of permeance are superimposed on fluctuations of the air-gap 
permeance due to static and dynamic eccentricities and to vibrations of the rotor with respect 
to the stator.  

As already mentioned, to derive a mathematical model supporting development of 
diagnostic systems it is indispensable to account for actual winding configuration, 
eccentricity, rotor vibration and cage asymmetry. The saturation has to be accounted for as 
well, at least globally via artificial magnification of the air-gap length. To account for actual 
winding configuration let us assume that the stator contains NZ coils, placed in NS slots. These 
coils are initially assumed to remain separated from one another. Each of these coils can 
possess individual span and number of turns. The rotor is assumed to possess a single cage 
which will be described via mesh currents. Each mesh is formed by two adjacent bars, 
connected by two end-ring segments. The mesh current of one of the end rings constitute one 
more mesh current which must be accounted for, as it is linearly independent of the others.  

Standard Kirchhoff’s equations can be written for the above described structure. Equations 
(1), in matrix or vector form, refer to the stator elementary coils and (2), also in matrix or 
vector form, refer to rotor-cage meshes. Equation (3) refers to the mesh current of one end 
ring:  
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The dimensions of the voltage and current vectors VS and iS are NZ, where NZ is the number 
of stator coils (NZ = 12). The dimension of the current vector iR  is NR, where NR is the number 



of rotor slots (NR = 22). The row vectors Rseg and Lseg contain NR values of Rseg or Lseg, 
appropriately.    

The dimensions of matrices RS of stator resistances and LS of stator inductances are NS by 
NS. 

The dimensions of matrices RR of rotor resistances and LR of rotor inductances are NR by 
NR. 

The dimension of matrix LSR of stator-rotor inductances is NS by NR. 
The dimension of matrix LRS of rotor-stator inductances is NR by NS. 
Rseg and Lseg are resistances and leakage inductances of the end ring segments, 

appropriately. 
Lunip, the inductance due to the unipolar or shaft flux, was assumed to be zero. 
The iseg current is a mesh current of one of the two rotor cage end rings. 
The electrical equations (1) through (3) have to be accomplished by two mechanical 

equations (4) and (5): 
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LT  -  the loading torque.  
The stator elementary coils are first connected to form branches and then configured into 

phases which, in turn, can be configured into wye (without neutral conductor). 
In other words, connection of the stator coils imposes constraints on the currents of the 

elementary coils: these currents are no longer linearly independent. In fact, the vector iS of the 
elementary currents can be expressed by a smaller number of linearly independent currents, 
aggregated into vector IS, making use of the connection matrix C:  

 

                                 .S S=i CI                                                                (7) 
 

Matrix C can only be established by making use of the winding data acquired from the 
manufacturer. 

To account for (7) let us multiply the matrix equation (1) by a transpose of C, that is by CT:  
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Substitution of (7) into (2) results (after simple manipulations) in:  
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Vector ~

SV  consists of external phase-to-phase voltages known from supply conditions. 
Vector SI  of linearly independent currents can substitute vector iS in formula (6) for 

electromagnetic torque:  
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Summarizing, the full set of equations constituting the mathematical model, consists of 

equations (8), (13), (3), (4), (5) and formula (14).  
Equations (9) and (10) are both in vector forms, describe any dynamical state of operation 

of the cage-rotor induction machine. However, practical use of these equations is conditioned 
by the knowledge of all the self- and mutual inductances, as well as the derivatives thereof, 
with respect to rotor angular position ϕ.  

If the inductances of the elementary stator coils were known, then simple multiplication via 
C or/and CT would result in ~

SL  or ~
SRL  in equations (8), (13) and formula (14), assumed the 

connection matrix C is known from manufacturer’s data. This multiplication is implemented 
in the computer program.  

Still, the method must be elaborated, which allowed to calculate all the self- and mutual 
inductances of the elementary stator coils and separate rotor-cage meshes.  

It follows from the well established theory of induction machines that each inductance can 
be split into the main and leakage parts. The leakage inductance, whether of a stator 
elementary coil or a rotor-cage mesh, results from the leakage flux, that is from the one not 
crossing the air gap. In computer implementation of the model discussed, calculation of these 
inductances is based on classical formulas. 

The main inductance (of any elementary circuit) results from the main or working flux, 
that is that crossing the air gap. This is what remains to concentrate on.  

In order to highlight calculations of main inductances, of separate elementary circuits, let 
us remind that by the assumption of infinitely high iron permeability, the mutual inductance 
of two coils (of the turns z1 and z2) wound on the core of the cross-section S and the air-gap δ, 
originating from main magnetic flux, is:  

 

                                 1,2 0 1 2 ,M z z Sµ= Λ                                                            (15) 
where  Λ=1/ δ 

By certain assumptions, equivalent formula can be obtain also for the case of an induction 
machine. 

First, let us assume that the envelope of the stator inner surface and that of the rotor outer 
surface are cylinders with parallel axes. Due to possible eccentricities and damaged bearings, 
the rotor, at a given time instant can assume an  off-centered position.  

Let us assume that the lines of the main magnetic flux cross the air gap down the shortest 
paths between the stator inner and rotor outer surface envelopes. Knowing the geometrical 
details of eccentricities and damaged bearings, as well as the rotor position ϕ at the time 



instant of interest, it is possible to determine the spatial position of the rotor with respect to 
the stator bore. This in turn allows to determine the lengths of these paths, for the whole range 
of (0, 2π) of angular coordinate x (still for a fixed time instance or rotor angle ϕ).  

Assume further that these lengths are locally magnified to account for permeance drops 
under stator and rotor slots.  These drops are chosen in such a way that the total permeance 
over one tooth pitch coincides with the one resulting from Carter’s coefficient. 

Altogether, for each separate time instant, we know the function λ(x) expressing 
reciprocals of the lengths of the magnetic lines in the air gap, accounting for eccentricities, 
slotting and bearings’ damage. 

Based on the general definition of the mutual inductance: 
 

                                         1(2)
1,2

2

,L
i

ψ
=                                                             (16) 

 

one achieves the following formula for mutual inductance, in the case of an induction 
machine:  
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− r, l − middle air-gap radius and axial length, 
− Λends – permeance for the axial-flux leak (omitted in calculations). 

The range of integration in (18) is (xbi, xei), that is from the left to the right side of the coil 
considered (numbered as 1 or 2). 

The range of integration in (19) is (xb1, xe1)∩(xb1, xe1). It is the union of the ranges from 
(18).  

The range of integration in (20) is full: (0,2π). 
The coils 1 and 2 can be thought to be placed on the stator or rotor, as the lines of the main 

magnetic flux are assumed to cross the air gap down the straight paths. These paths are radial 
only by lack of eccentricities. 

Once the formulas (17) to (20) are established, calculations of machine’s inductances is a 
matter of implementing an appropriate program. In program implementation the integrals (18) 
to (20) are calculated in a numerical way. Formula (17) is used for all the stator and rotor 
elementary coils. The calculated main inductances are then accomplished by leakage 
inductances calculated in a classical way, whereby they are assumed to be constant. 

The thus established self- and mutual inductances (of single stator coils and cage meshes) 
are transformed via a stator connection matrix C. 

At this stage all the self- and mutual inductances (of all the linearly independent circuits) 
are calculated for just one single rotor position and the values are stored in a 2D matrix on 
disc. 

These calculations are repeated for as many as about 400 rotor positions. Hence, one 
obtains a 3D matrix of inductances and their derivatives on the disc.  
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3. Numerical Calculations 
 
Fig. 1. shows spectra of stator currents for various degrees of vibration of the rotor, similar 

to those resulting from a damaged bearing. The rotor vibration degree is understood as rotor 
vibration amplitude expressed as percentage of the air-gap length.  It is referred to as “runOut’ 
in Figs 1 through 5. The calculations were made for a 1.1 kW, three phase motor with 24 
stator and 22 rotor slots. They were performed for a number of radial rotor vibrations, 
oscillating eight times faster than the actual rotational speed of the rotor. This means that in 
the calculations it has been assumed that additional vibrations of the position of the rotor’s 
axis depend on 8·φ where φ is the angle of rotation of the rotor.  

The values of spectral lines carrying information on the motor’s vibrations appear in the 
interval from – 60 to – 100 dB with respect to the fundamental component F1 with a 
frequency of 50 Hz, designated with the number 1 in Fig.1. The harmonic F13, numbered 13, 
is the slot harmonic. Its frequency is F13 = 1098.6 Hz. This frequency is related to the slip s 
through the relation [4] : where f1 = 50 Hz, NR = 22, and a number of pole pairs p= 2.  

This motor belongs to the category “210” with the parameter h = 2. From [3] it results that 
the slip is 0.04672. This corresponds to a rotational speed n = 23.83 rps. The rotor oscillation 
frequency is fw = 8·n = 190.64 Hz. Double frequency of vibrations is D = 2·190.64 = 381.28 
Hz. 

Thus in the spectra in Fig. 1 we find the following frequencies: 
F5 = 50 + D   [Hz]; 
F9 = 50 + 2·D   [Hz]; 
F4 = |50-D| = D – 50   [Hz], 
F8 (the one on the left) = |50-2·D| = 2·D – 50   [Hz]. 
Also the slot harmonic F13 gives rise to its own chain of harmonics caused by rotor 

vibrations: 
F14 = F13 + D [Hz]; 
F8 (the one on the right, barely visible) = F13 – D [Hz].  
Harmonic F6 appearing with a centric rotor (without radial 
vibrations) is the source of harmonics F2 and F10: 
F2 = F6 – D [Hz]; 
F10 = F6 + D [Hz].  

Harmonic F7 appearing with a centric rotor (without radial vibrations) is the source of 
harmonics F3 and F11: 

F3 = F7 – D [Hz]; 
F11 = F7 + D [Hz]. 
Generally, the following conclusions can be drawn from tests performed on a model: 

1. All frequency components present in the spectrum of a motor with a centric rotor can be 
modulated with a frequency of 2·fw (and its multiples), where fw is the frequency of 
oscillations of the air gap 

2. The amplitudes of information-carrying spectrum components appear in the range from –
60 to – 90 decibels with respect to the fundamental frequency of 50 Hz. 

These conclusions are important for the design and construction of a diagnostic system.   
 



-100

-80

-60

-40

-20

0

cu
rr
en

t (
dB

)

\SWE1_1,1.1kW,NS=24,NR=22 
st,ro  centric

-100

-80

-60

-40

-20

0
cu

rr
en

t (
dB

) 10% runOut

-100

-80

-60

-40

-20

0

cu
rr
en

t (
dB

) 20% runOut

-100

-80

-60

-40

-20

0

cu
rre

nt
 (d

B
) 30% runOut 

-100

-80

-60

-40

-20

0

cu
rr
en

t (
dB

) 40% runOut

0 400 800 1200 1600
frequency (Hz)

-100

-80

-60

-40

-20

0

cu
rre

nt
 (d

B) 50% runOut

1

2 3
4 5

6 7 8 910 11
12

13

14

 
 

Fig. 1.  Stator current harmonics (in decibels referred to a 50 Hz harmonic) for 8·φ vibrations of the rotor, for 
zero to 50% of the air gap length (thickness). 

 
 
 

 



4. Laboratory Simulation and Measurements 
 

Measurements and the spectrum analysis were performed in a specially developed 
measurement system characterized by low noise and a high dynamic range of 90 dB.  

In the first stage of experimental tests it has been decided, to just facilitate the existing 
relations, to force the motor to the oscillations of the air gap at one specific frequency, which 
could have been adjusted. To achieve this, a direct-current motor with variable rotational 
speed has been attached to the body of  the tested, elastically founded motor. The rotor of the 
DC motor had a specially-added eccentric mass which during rotation brought the frames of 
both motors into oscillation with an adjustable frequency.  

The object under test was a 1.1 kW motor with two pole pairs (synchronous speed ns=25 
rps).  

Fig. 2. presents the spectrum of the tested motor operating with a load of 70% of In without 
external vibration.   

Notice in Fig. 2. the appearance of the fundamental component f1 and its odd harmonics: 
3f1, 5f1. The source of the higher harmonics is the distorted supply voltage. The spectrum 
contains also harmonics caused by modulation of current components, resulting from 
distorted voltage, by the revolution frequency of the rotor. The frequencies identified in the 
current spectrum in Fig. 2 are summarized in Table 1.  

Symbols in Table 1 are as follows: f1 – frequency of the supply source, fr – current 
rotational speed of the rotor of the tested motor, p – number of pole pairs, df = f1/p – fr.  

In order to confirm the correctness of identification of the spectrum components, tests were 
performed at different loads of the motor. With increased loading the angular frequency is 
reduced and the identified components change according to relations listed in Table 1.  

Fig. 3 presents the supply current spectrum of the motor for the case of an active vibrator 
generating oscillations with a frequency of 40 Hz. The motor under test is without load.  

Crosses denote spectral lines, of no diagnostic significance, due to their presence also in 
the case of lack of vibrations. The other components were identified in accordance with the 
principle stated in Section 2 – these are the effects of modulation of the components from 
Table 1 with a frequency of ±2·fw. New diagnostic components appeared, which are due to the 
effect of modulation of spectrum components with a single frequency fw. 
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Fig. 2. The spectrum of an induction motor loaded to 70% In, without external vibrations. 
 
 
 



 
Table 1. Frequencies identified in the motor spectra in Fig. 2. 

Symbol in Fig. 2 Relationship 
1 f1 
2 3f1 
3 5f1 
4 f1 – fr 
5 f1 + fr 
6 f1 – 2fr 
7 f1 + 2fr 
8 |f1 – 3fr| 
9 f1 + 3fr 
10 3f1 - fr 
11 3f1 + fr 
12 3f1 – 2fr 
13 3f1 + 2fr 
14 5f1 – fr 
15 5f1 + fr 
16 5f1 – 2fr 
17 |f1 – 5fr| 
18 f1 + 5fr 
19 f1 –4df 
20 f1 + 4df 
21 f1 – 8df 
22 f1 + 8df 
23 f1 – 12df 
24 f1 + 12 df 
25 f1 – 16df 
26 f1 + 16df 
27 f1 – 20df 
28 f1 + 20df 
29 f1 – 24df 
30 f1 + 24df 
31 f1 – 44df 
32 f1 + 44df 
33 2f1 
34 2f1+22df 
35 3f1 – 3fr 
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Fig. 3. The current spectrum of an idle-running induction motor with an active vibrator generating vibrations of 
the body of the motor under test with a frequency of 40 Hz. 

 
An example of notations used in Fig. 3:  Symbol 6A in  Fig. 3 denotes the modulation of 

the component with no.6 in Table 1 by frequency +fw (the letter B would accordingly denote 
the modulating frequency –fw, the letter C the frequency +2·fw and the letter D the frequency –
2·fw).  

In order to confirm the correctness of identification of the spectrum components, tests were 



performed at different frequencies of the vibrator. The result is shown in Fig.4. With 
increased vibrator frequency the identified components change according to relations listed in 
Table 1.  
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Fig. 4. The dependence between frequencies of spectrum current components and vibration  frequency 

(numbers of components according to Table 1). 
 
Conclusions drawn from the simulation tests are the following: 

1. In the spectrum of a motor without oscillations of the air gap, components appear at 
harmonic frequencies of the supply voltage. There are also harmonics present which result 
from modulation of current components resulting from distorted voltage, by the rotational  
frequency,  

2. In the presence of oscillations of the air gap, new components appear in the current 
spectrum which can be identified as products of modulation of the components described 
in Table 1 by the air gap oscillation frequency and its multiples. 

 
5. Conclusion 

 
1. Diagnostics of bearings, based on the analysis of the current spectrum becomes easier 

when the motor runs idle – the spectrum contains more diagnostic components with 
greater amplitudes.  

2. The assumption of a general thesis that all frequency components present in the spectrum 
of a motor with eccentric rotor can be modulated by the ± fw and ± 2fw frequency, where 
fw is the frequency of oscillation of the air gap, permits to reduce the diagnostics to search 
for spectrum components with frequencies determined beforehand. The fw frequencies for 
various types of bearing faults are given in [1].  

3. Success requires that the measurement system have an accordingly low noise level and 
high dynamic range of measurement.  

4. The measurement of the angular velocity and of the supply network frequency should be 
carried out and averaged over the same time interval in which the current signal sample 
has been taken for spectrum analysis.  

5. Due to the fact that generally the current spectrum contains a number of components with 
closely spaced frequencies, it is necessary to determine the frequency of the supply 
network as well as the rotational frequency with an inaccuracy not exceeding ± 0.03 Hz. It 
is also necessary to have a spectrum resolution of at least 1/8 Hz. 
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